Dr. Dobb's is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.


Channels ▼
RSS

Class D Audio Amplifiers: What, Why, and How - Part 5


Modulation Technique
Class D modulators can be implemented in many ways, supported by a large quantity of related research and intellectual property. This article will only introduce fundamental concepts. All Class D modulation techniques encode information about the audio signal into a stream of pulses. Generally, the pulse widths are linked to the amplitude of the audio signal, and the spectrum of the pulses includes the desired audio signal plus undesired (but unavoidable) high-frequency content. The total integrated high-frequency power in all schemes is roughly the same, since the total power in the time-domain waveforms is similar, and by Parseval's theorem, power in the time domain must equal power in the frequency domain. However, the distribution of energy varies widely: in some schemes, there are high energy tones atop a low noise floor, while in other schemes, the energy is shaped so that tones are eliminated but the noise floor is higher.

The most common modulation technique is pulse-width modulation (PWM). Conceptually, PWM compares the input audio signal to a triangular or ramping waveform that runs at a fixed carrier frequency. This creates a stream of pulses at the carrier frequency. Within each period of the carrier, the duty ratio of the PWM pulse is proportional to the amplitude of the audio signal. In the example of Figure 7, the audio input and triangular wave are both centered around 0 V, so that for 0 input, the duty ratio of the output pulses is 50%. For large positive input, it is near 100%, and it is near 0% for large negative input. If the audio amplitude exceeds that of the triangle wave, full modulation occurs, where the pulse train stops switching, and the duty ratio within individual periods is either 0% or 100%.


Figure 7. PWM concept and example.


PWM is attractive because it allows 100-dB or better audio-band SNR at PWM carrier frequencies of a few hundred kilohertz—low enough to limit switching losses in the output stage. Also, many PWM modulators are stable up to nearly 100% modulation, in concept permitting high output power-up to the point of overloading. However, PWM has several problems: First, the PWM process inherently adds distortion in many implementations (Reference 4); next, harmonics of the PWM carrier frequency produce EMI within the AM radio band; and finally, PWM pulse widths become very small near full modulation. This causes problems in most switching output-stage gate-driver circuits—with their limited drive capability, they cannot switch properly at the excessive speeds needed to reproduce short pulses with widths of a few nanoseconds. Consequently, full modulation is often unattainable in PWM-based amplifiers, limiting maximum achievable output power to something less than the theoretical maximum—which considers only power-supply voltage, transistor on resistance, and speaker impedance.

An alternative to PWM is pulse-density modulation (PDM), in which the number of pulses in a given time window is proportional to the average value of the input audio signal. Individual pulse widths cannot be arbitrary as in PWM, but are instead "quantized" to multiples of the modulator clock period. 1 bit sigma-delta modulation is a form of PDM.


Related Reading


More Insights






Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

Dr. Dobb's encourages readers to engage in spirited, healthy debate, including taking us to task. However, Dr. Dobb's moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing or spam. Dr. Dobb's further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.